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Numerical computations and order of magnitude estimates are presented for the
periodic generation and coalescence of bubbles due to the injection of a constant flow
rate of a gas through a circular orifice at the bottom wall of an inviscid dielectric or
very polar liquid that is at rest and subject to a uniform vertical electric field far from
the orifice. The problem depends on five dimensionless parameters: a Bond number
based on the radius of the orifice; Weber and electric Bond numbers whose square
roots are dimensionless measures of the flow rate of gas and the applied electric field;
the dielectric constant of the liquid; and the contact angle of the liquid with the
bottom wall. The bubbles that grow quasi-statically at the orifice for small values
of the Weber number are always elongated vertically by the electric stress that acts
on their surface when an electric field is applied. The volume of these bubbles at
detachment may reach a maximum at a certain value of the electric Bond number,
if the Bond number is sufficiently small, or decrease monotonically with the electric
Bond number if the Bond number is larger. In both cases the bubbling ceases to be
periodic beyond a certain value of the electric Bond number, apparently giving way to
more complex bubbling regimes, which are not investigated here. Bubble interaction
and eventually coalescence occur when the Weber number is increased keeping the
electric Bond number in the range of periodic bubbling. Different periodic regimes
are described. It is shown that a moderate electric field may increase the value of the
Weber number above which coalescence occurs without changing the shape of the
bubbles much. A large electric field may suppress coalescence but it also favours the
development of upward and downward jets that cross the bubbles and may cause
their breakdown.

1. Introduction
Small bubbles are a common requirement in applications such as bubble-column

reactors and boiling heat exchangers, where large rates of heat or mass transfer are
sought through an increase in the gas–liquid interface area for a given volume of gas.
Other applications of small bubbles include their use as tracers for flow visualization
and their use in the fabrication of porous light materials. A high electric field has
been often proposed and used as a means of generating small bubbles that can
be energetically more efficient than mechanical agitation for liquids of small and
moderate electrical conductivity. The reason is that the electric field generates stresses
directly at the interface (with a component directed toward the gas) and thus may
reduce the waste of mechanical energy in the bulk of the liquid that accompanies
mechanical agitation (Tsouris, Shin & Yiacoumi 1998).

Generation of bubbles by injection of a gas into a liquid at rest has beenmuch stu-
died in the absence of an electric field; see Kumar & Kuloor (1970), Clift, Grace &
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Weber (1978), Räbiger & Vogelpohl (1986), Tsuge (1986) and Sadhal, Ayyaswamy &
Chung (1997) for reviews. At low gas flow rates, the shape of the bubbles growing
at the injection orifice is determined by a balance of surface tension and buoyancy
forces. The inertia of the liquid begins to have an effect when the flow rate becomes
of the order of a certain critical value (reviewed in § 3.3 below), and dominates when
the flow rate is further increased, leading to a periodic regime in which the volume
of the bubbles increases as the 6/5th power of the gas flow rate and is independent
of the surface tension and the size of the orifice (Davidson & Schuler 1960;
Ramakrishna, Kumar & Kuloor 1968). This is followed by a sequence of period
doubling, involving the interaction and coalescence of successive bubbles and ending
in a regime of chaotic bubbling (Tritton & Egdell 1993; Mittoni, Schwarz & La
Nauze 1995; Nguyen et al. 1996; Tufaile & Sartorelli 2000, 2001).

Zaky & Nossier (1977) observed that the size of the bubbles generated by injecting
air into n-heptane and transformer oil through a metallic needle charged to a high
voltage relative to a plane electrode immersed in the liquid perpendicularly to the
needle decreases when the applied voltage increases. They also measured the increase
of the pressure in the bubbles due to the inward electric stress at their surface. In
further experiments on the dispersion of bubbles in the non-uniform electric field
that exists around an electrified needle, Ogata, Yoshida & Shinohara (1979), Ogata
et al. (1980) and Ogata et al. (1985) investigated the efficiency of this process and the
influences of the liquid permittivity and conductivity and of the electrode geometry.
Sato, Kuroda & Sakai (1979) and Sato (1980) offered a classification of the bubbling
regimes observed when the applied voltage is increased; these range from periodic
bubbling to dispersed bubble production and to fine clouds of bubbles at very
high voltages. These authors measured the size distribution of bubbles of nitrogen
injected into distilled water, showing that it becomes bimodal and develops a long
tail at large sizes when the voltage increases. Similar results were obtained by
Sato, Saito & Hatori (1993) and Sato, Hatori & Saito (1997) for the electrostatic
emulsification of non-conducting liquids of different viscosities in distilled water.
Sato et al. also proposed that bubble dispersion could be dominated by the
electrohydrodynamic flow induced by electric forces acting in the continuous phase.

Tsouris et al. (1994, 1995) devised an alternative configuration of the electrodes that
is suitable for cases where a non-conducting fluid is injected into a conducting fluid.
In their configuration, a large electric field is generated in the inner non-conducting
fluid rather than in the outer conducting fluid. This increases the efficiency of the
dispersion process by decreasing the electric current and also leads to somewhat
smaller bubbles or drops. The effects of the physical properties of the fluids, the
geometrical parameters of the nozzle and electrode and the injected flow rate were
investigated experimentally by these authors, while Harris & Basaran (1995) carried
out numerical computations of the shape and stability of the interface that revealed
the influence of the electric stress on surface pinch-off. Shin, Yiacoumi & Tsouris
(1997) proposed an empirical model to predict the bubble size as a function of
the applied voltage and air flow rate and outlined three different modes of bubble
formation: a dripping mode at low voltages and high flow rates; a spraying mode
at high voltages and low flow rates; and an erratic mixed mode. Larger flow rates
leading to bubble interaction were recently investigated by Sarnobat et al. (2004) by
injecting nitrogen into glycerol through an electrified needle and applying nonlinear-
dynamics analysis tools to their pressure measurements. These authors found period-
doubling routes to chaotic bubbling when the electric potential or the flow rate were
increased.
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Theoretical studies of electrohydrodynamically enhanced boiling heat transfer
from a surface heated to a temperature above the boiling temperature of the
surrounding liquid were performed by Cheng & Chaddock (1985, 1986) and Ogata &
Yabe (1993a, b). The first authors studied the growth rate and final volume of a bubble
attached to a wall in a uniform electric field using a spheroidal approximation for the
bubble shape and a simple model for the heat transfer in the boundary layer around
the bubble. Ogata and Yabe pointed out the importance of the electric relaxation
time of the liquid compared with the characteristic time of bubble development; they
accounted for the charge that appears in the bulk of the liquid due to the variation of
its electrical conductivity with temperature in the thermal layer around the wall and
noticed that the electric force acting on an attached bubble may lead to its horizontal
drift on the wall and sometimes also its violent breakup, in addition to vertical
elongation of the bubble. Further computations and experimental visualizations of the
shape of an attached bubble in uniform and non-uniform electric fields were performed
by Cho et al. (1996, 1998) and Kweon et al. (1998) without any assumptions about
the form and magnitude of the surface deformation. Di Marco et al. (2003) (see also
the references in their paper) investigated experimentally the growth and detachment
of bubbles under an electric field in microgravity. A review of the work carried out
in the area of heat transfer was given by Seyed-Yagoobi & Bryan (1999).

This paper is devoted to a numerical simulation of the time-periodic generation
of bubbles by injection at a constant flow rate of a gas through a circular orifice
at the horizontal bottom wall of a liquid which is at rest and subject to a uniform
electric field far from the orifice. The liquid will be treated as an inviscid fluid that is
either a dielectric or very polar. The assumption of an inviscid liquid has been often
used in the analysis of bubble generation in cases when the Reynolds number of the
flow induced in the liquid by the expansion of the bubbles growing at the orifice is
large; see Oguz & Prosperetti (1993), Oguz & Zeng (1997) and the reviews cited in
the second paragraph of this section. At the onset of the high-flow-rate regime, where
the inertia of the liquid begins to affect the dynamics of the growing bubbles, this
Reynolds number is of order Rec = (γ a/ρν2)1/2 in the absence of an electric field,
where ρ, ν and γ are the density, kinematic viscosity and surface tension of the liquid
and a is the radius of the injection orifice. Values of Rec of several hundred are
typical of liquids with the physical properties of water and orifice radii of the order
of 1 mm, and higher Reynolds numbers are attained when the gas flow rate is further
increased or an electric field is applied. The flow of the liquid is irrotational if viscous
effects are neglected. In a recent work (Higuera & Medina 2006) it was suggested that
the interaction and coalescence of bubbles that occurs in the vicinity of the injection
orifice at moderately large values of the gas flow rate can also be analysed with the
irrotational-flow approximation. This latter work will be extended here to take into
account the presence of an electric field.

The liquid acts as a dielectric when the electric relaxation time, equal to the ratio of
the liquid’s permittivity to its electrical conductivity, is large compared with the inverse
of the bubbling frequency (Saville 1997). In these conditions there is no significant
accumulation of free electric charge at the surface of the bubble, and no electric
shear stress on this surface, which would be incompatible with the assumption of an
irrotational flow. As will be seen in the following section, the analysis of this paper
is also valid for very polar liquids irrespective of the value of the electric relaxation
time. The reason is that the electric stress on very polar liquids is always nearly
perpendicular to their surface, and the electric field becomes independent of the free
surface charge. Relaxation times of the order of 1 s or larger can be achieved with
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apolar hydrocarbons such as hexane, heptane and cyclohexane, and with refrigerants
such as R11 and R113, all of which are less viscous than water and have been
used often in the experimental work reviewed above. Since the bubbling periods of
these liquids are of the order of 10−2 s in the conditions mentioned in the preceding
paragraph, they act as dielectrics, to a good approximation, for the bubbling regimes
of interest here. Polar liquids of small viscosity are more numerous. However, many
of them, including water, have high electrical conductivities, which poses practical
problems due to excessive energy dissipation when simple electrode configurations
that lead to large electric fields in the liquid are used (Tsouris et al. 1994, 1995).

Finally, the limitation of the numerical computations to time-periodic flows sets
upper bounds for the gas-flow rate and the electric field, thus leaving out more
complex non-periodic and chaotic regimes, whose analysis is not attempted here.

2. Formulation
The following problem is considered. A gas is injected at a constant flow rate

through a single circular orifice at the horizontal hydrophilic bottom wall of an
inviscid dielectric or very polar liquid that is at rest far from the orifice. A high
d.c. voltage is applied between the bottom wall, which is taken to be a perfect
conductor, and another horizontal electrode a large distance above the bottom wall.
In the absence of gas injection (and assuming that the orifice is covered with a fine
metallic grid) this voltage leads to a uniform vertical electric field E∞ in the liquid.
The electric field is distorted when gas is injected through the grid-covered orifice,
owing to the difference between the electric permittivity of the gas, ε0, and the electric
permittivity of the liquid, ε0ε, where ε > 1 is the dielectric constant of the liquid.
(See e.g. Wohlhuter & Basaran 1992 and Notz & Basaran 1999 for the better-studied
complementary problem of drop injection, for which ε < 1).

The electric fields in the liquid and gas phases are of the form E = ∇φ and
Eg = ∇φg , where φ and φg are the negative of the electric potentials, which are
harmonic functions. Hereinafter a superscript g denotes conditions in the gas and the
absence of a superscript denotes conditions in the liquid. Assume first that the liquid
is a dielectric. Then the boundary conditions for the electric field at the liquid–gas
surface are (Landau & Lifshitz 1960)

εEn = Eg
n and Et = E

g
t , (2.1)

where the subscripts n and t denote the components of the electric fields normal and
tangential to the surface.

In the absence of electric charge in the bulk of the liquid, and assuming that its
dielectric constant is uniform, the only effect of the electric field on the motion of the
fluids is to produce a stress at the liquid–gas surface that is normal to the surface,
points toward the gas and has magnitude (Saville 1997; Landau & Lifshitz 1960)

τ e
n = 1

2
ε0

(
Eg2

n − εE2
n

)
+ 1

2
ε0(ε − 1)E2

t . (2.2)

Assume now that the liquid has electrical conductivity K > 0. Then the electric
field leads to a current density j = K E, which brings electric charge to the liquid–gas
surface. If the electrical conductivity of the gas is neglected, the surface charge density
σ satisfies the charge conservation equation (Saville 1997)

Dσ

Dt
= −KEn + (n · ∇v · n) σ. (2.3)
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Here v is the velocity of the liquid, n is the unit normal to the surface pointing toward
the liquid and D/Dt = ∂/∂t + v · ∇ is the material derivative at a point on the surface.
The two terms on the right-hand side of (2.3) represent the electric charge reaching
the surface per unit area per unit time by conduction in the liquid, and the rate of
change in σ due to the stretching of the surface.

In the presence of surface charge, the first condition in (2.1) changes to ε0(εEn −
Eg

n ) = σ and an electric shear stress τ e
t = σEt appears at the surface in addition to

the normal electric stress (2.2); see Saville (1997). However, accumulation of surface
charge to a sufficient level to affect the electric field requires a time of the order of
the electric relaxation time te = ε0ε/K (from the order of magnitude balance of the
first two terms of (2.3), σ/te ∼ KEn with σ ∼ ε0εEn ∼ ε0E

g
n ). The effect of the surface

charge is therefore negligible, and the liquid can be treated as a perfect dielectric,
when the time of growth and detachment of the bubbles is small compared with the
electric relaxation time. The effect of the surface charge can be also neglected for very
polar liquids (ε � 1), irrespective of the values of the relaxation and bubbling times.
In this limit, the first condition (2.1), or its modified form at the beginning of this
paragraph, implies that En � Eg

n , which can be simplified to En = 0; the expression
(2.2) for the normal stress can be simplified to τ e

n = 1
2
ε0εE

2
t ; and the electric shear is

small compared with the normal stress, τ e
t /τn = O(1/ε), even if σ = O(ε0E

g
n ).

The gas will be treated as an incompressible fluid with a density negligibly small
compared with the density of the liquid. The expansion of the bubble growing at the
orifice and the rise of the bubbles detached previously induce an irrotational flow
in the liquid. The velocity potential, ϕ such that v = ∇ϕ in the liquid, the electric
potentials in the liquid and in the bubbles, φ and φg , and the surfaces Σi of the
bubbles (which have equations fi(x, t) = 0 with fi > 0 in the liquid) are determined
by the solution of the following problem:

∇2ϕ = 0, ∇2φ = 0 in the liquid; (2.4)

∇2φg = 0 in each bubble; (2.5)

Dfi
Dt

= 0, (2.6)

Dϕ

Dt
=

1

2
|∇ϕ|2 − pgi

− Bx + ∇ · ni +
B

E

2ε

{
Eg2

n − εE2
n + (ε − 1)E2

t

}
(2.7)

and

εEn = Eg
n, φ = φg (2.8)

at the surface of the ith bubble (the first condition in (2.8) is written here for a
dielectric liquid);

∂ϕ

∂x
= 0, φ = φg = 0 (2.9)

at the horizontal bottom wall x = 0;

∇ϕ → 0, ∇φ → ex for x → ∞; (2.10)

and ∫
Σ0

v · n0 dA = We1/2,

∫
Σi

v · ni dA = 0, i = 1, 2, . . . . (2.11)

In these equations x is the vertical distance to the bottom wall, ex is a unit vector
pointing upwards and ni = ∇fi/|∇fi | is the unit normal to the surface of the ith
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Figure 1. Terminology.

bubble, so that ∇ · ni in (2.7) is the surface tension stress. Here i = 0 denotes the
bubble attached to the orifice and i =1, 2, . . . denote the bubbles detached previously.
Distances are scaled with the radius a of the orifice; times are scaled with the capillary
time (ρa3/γ )1/2, where ρ and γ are the liquid density and surface tension; the electric
potentials are scaled with E∞a; and pgi

(t) is the pressure of the gas in the ith bubble
referred to the pressure of the liquid at the bottom far from the orifice and scaled
with γ /a. The dimensionless parameters that appear in the equations are

B =
ρga2

γ
, We =

ρQ2

γ a3
, ε, B

E
=

ε0εE
2
∞a

γ
, (2.12)

where g is the acceleration due to gravity and Q is the flow rate of gas injected
through the orifice. These parameters are a Bond number, a Weber number, the
dielectric constant of the liquid and an electric Bond number, respectively.

Equations (2.11) express the conditions that the volume of the bubble attached to the
orifice (i = 0) increases at a constant rate equal to the volume of gas injected per unit
time (We1/2 in dimensionless variables) and that the volumes of the detached bubbles
(i = 1, 2, . . .) do not change with time. These equations determine the pressures pgi

(t).
An additional condition is needed at the contact line of the attached bubble and

the bottom wall. The condition used here is adopted from Higuera & Medina (2006).
A constant contact angle θ is assumed and the contact line is taken to coincide with
the edge of the orifice when the angle of the liquid–gas surface with the horizontal
is larger than the contact angle (i.e. when −nx0

< cos θ , where nx0
is the vertical

component of the unit normal n0 to the attached bubble, see figure 1) and to shift
outward from the orifice, the liquid–gas surface making an angle with the bottom
wall equal to the contact angle (−nx0

= cos θ), otherwise. The contact angle θ is a
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fifth parameter of the problem, along with B , We, ε and B
E

as defined in (2.12).
Though the present formulation is valid for any value of θ , numerical results will be
given only for liquids that wet the bottom wall with θ = 45◦ or smaller. Poor wetting
(larger θ) is known to have an effect on the volume of the bubbles generated at
small Weber numbers, but this effect will not be discussed here. See Gnyloskurenko
et al. (2003), Gerlach et al. (2005) and Corchero, Medina & Higuera (2006) for recent
investigations of the problem of poor wetting in the absence of an electric field.

In the limit of very polar liquids (ε → ∞) the electric stress, within the braces in (2.7),
simplifies to 1

2
B

E
E2

t and the first condition in (2.8) changes to En = 0. As mentioned
earlier, this formulation for very polar liquids is valid even if the electric relaxation
time is not large compared to the time of growth and detachment of the bubbles.

Only time-periodic axisymmetric solutions of the problem were computed. This
was done numerically by marching in time from an initial state in which gas
injection starts without any bubble present in the liquid and letting the system
evolve through a number of bubble detachments (and eventually coalescences) until
the process becomes periodic to the accuracy of the numerical computations. A
standard boundary-element method was used to solve the Laplace equations, and a
second-order Runge–Kutta method was used to advance in time the material nodes
at the surfaces of the bubbles and the velocity potential at them according to (2.6)
and (2.7), pgi

(t) being constrained to satisfy (2.11) at each time step. The numerical
method is a straightforward extension of the method used before to compute the
injection and coalescence of bubbles in the absence of an electric field (Higuera &
Medina 2006), which in turn follows the implementation of Oguz & Prosperetti (1993).
Numerical details can be seen in this latter paper and in Oguz & Zeng (1997). See
Higuera (2005) for a similar treatment of the moving contact line in the different
regime of bubble generation under creeping-flow conditions.

As in the previous work of Higuera & Medina, the number of bubbles
simultaneously followed is limited to three by removing the uppermost bubble when
a new bubble begins to grow at the orifice. This is a definite approximation, given
the elliptic character of the problem. However, tests carried out retaining one more
bubble show that the presence of the extra bubble does not drastically change the
dynamics of the bubble growing at the orifice and its possible coalescence with the
bubble immediately above it. The relative variation in the centre of mass of the most
recently detached bubble (i = 1) found in these tests was of the order of 5 %, and the
observed variations in the shape of the attached bubble and its volume at detachment
were smaller than for the bubble i = 1. The number of nodes used to discretize the
meridian section of the axisymmetric surface of each bubble ranged from 60 to 120
depending on the size of the bubble. Surface reconnections at the detachment of
a bubble and at the coalescence of two bubbles were assumed to occur when the
distance between the two approaching surfaces becomes smaller than a certain cutoff,
which is in the range 0.05 to 0.1 in typical computations. Global results are insensitive
to the precise value of the cutoff distance, which is of the order of the separation
between the nodes used to discretize the surfaces. It is this separation that determines
the accuracy of the entire numerical procedure.

3. Results and discussion
3.1. Quasi-static bubbles

Consider first the growth and detachment of bubbles at values of the gas flow rate
sufficiently small for the effect of the pressure variations induced in the liquid by the



210 F. J. Higuera

160

180

200
(a)

(c)

(b)

0 2 4 6 8
35

40

45

50

0 2 4 6 8

Vb

B = 0.03 B = 0.1

BE
1/2 BE

1/2

Figure 2. Dimensionless volume of the bubbles at detachment (scaled with a3) as a function
of the dimensionless electric field B1/2

E
for ε = 2 (solid line) and ε = 10 (dashed line), at very

small values of We. (a) B = 0.03, (b) B = 0.1. The shapes of the bubbles immediately before
detachment are shown for ε = 2 in (a) and ε = 10 in (b) at different values of B1/2

E
; the two

small vertical lines in each bubble picture denote the edge of the orifice. (c) The shapes of a
bubble growing quasi-statically for B = 0.03, B1/2

E
= 1.58, ε = 10, θ =45◦, and seven equispaced

values of the bubble volume. The rightmost image is not part of the quasi-static evolution. It
depicts a rising bubble immediately after detachment and the new bubble left at the orifice,
with re-entrant jets in both bubbles.

growth of the bubble attached to the orifice to be small compared with other forces
acting on the surface of the bubble. The attached bubble follows then a sequence
of quasi-static equilibria with increasing volumes, until detachment occurs when a
hydrostatic equilibrium ceases to be possible or becomes unstable. The dimensionless
volume of the bubble at detachment is given in figure 2 as a function of the square
root of the electric Bond number B

1/2
E for different values of ε and B . The value ε = 2

corresponds to apolar liquids such as cyclohexane or n-heptane, which have been
often used in experiments, and ε =10 is representative of polar liquids, for which the
electric stress (2.2) is dominated by the term 1

2
ε0εE

2
t . The results in figure 2 were

obtained from the numerical solution of (2.4)–(2.11) for small values of the Weber
number. Different values of We in the range 0.05 to 0.5 were used to check the
independence of the shape and volume of the bubbles with We and thus with the
motion of the liquid. The volume of the bubbles does not depend on the precise
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value of the contact angle as long as the contact line coincides with the edge of the
orifice when the bubble detaches. This condition is satisfied in all the cases displayed
in figure 2, which were computed taking θ = 45◦, and is also satisfied for any θ < 45◦.
However, the contact line shifts away from the orifice during part of the quasi-static
evolution of the bubble when B = 0.03, as illustrated in figure 2(c). Larger values of
the contact angle or smaller values of B , which would lead to a shift of the contact
line that persists at the end of the quasi-static evolution of the attached bubble, were
not investigated numerically in the work presented in this paper.

The equilibrium shapes and volumes of the bubbles at detachment were computed
by Longuet-Higgins, Kerman & Lunde (1991) in the absence of an electric field. These
volumes are thus attained when the electric Bond number B

E
= 0 in figure 2. The

attached bubble becomes increasingly elongated as B
E

increases. For small values of
the Bond number B , the volume at detachment first increases and then decreases when
the electric field increases (figure 2a), but the range in which the volume increases
disappears at larger values of the Bond number (figure 2b). In both cases the volume
reaches a minimum at a certain B

E
, and the bubbles cease to grow quasi-statically

when B
E

is increased above the highest values shown in figure 2. Then the meniscus
undergoes violent oscillations during the first stages of its growth, its tip sometimes
shedding a tiny bubble (as in the lowest inset in figure 2b) and sometimes becoming
concave and engulting a tiny drop. These results suggest a transition to the spraying
or disperse-bubble production regime of Sato (1980) and Shin, Yiacoumi & Tsouris
(1997), but such complex regimes cannot be realistically described by axisymmetric
computations and will not be discussed in what follows.

Some of the trends shown by the results in figure 2 can be understood in terms of
order of magnitude estimates for small values of the Bond number B . These estimates
are presented here using dimensional variables. Let us first review the results that
exist for B

E
= 0. It is well known (Davidson & Schuler 1960) that in the absence of an

electric field the bubbles growing quasi-statically at the end of a tube or at an orifice
in a hydrophilic surface (θ � 1) are nearly spherical up to detachment when B � 1,
and their final volume, Vb1

, is determined by the balance of the buoyancy force and the
surface-tension force acting across the contact line attached to the edge of the orifice:

ρgVb1
= 2πγ a (3.1)

(see Fritz 1935 and Oguz & Prosperetti 1993, for example). This balance gives
the Fritz volume Vb1

= 2πaγ /ρg, or Vb1
/a3 = 2π/B in dimensionless variables.

The bubble is spherical in these conditions because the hydrostatic pressure
variation is small compared with the pressure jump due to the surface tension:
(ρgV

1/3
b1

)/(γ /V
1/3
b1

) = O(B1/3) � 1. Since the surface of the attached bubble is not
closed, the gas overpressure, of order γ /V

1/3
b1

, gives an upward force of order
a2γ /V

1/3
b1

, which should have been included in the balance of forces (3.1) (see
Kabanow & Frumkin 1933). This pressure force, however, is smaller than either of
the two terms of (3.1) by a factor of order a/V

1/3
b1

=O(B1/3).
When an electric field E∞ exists far from the attached bubble, an electric stress of

order ε0εE
2
∞ appears at the surface of the bubble. In the presence of the equipotential

bottom wall, this stress gives a downward force of order ε0εE
2
∞V

2/3
b on a bubble

of volume Vb, which helps to keep the bubble attached to the orifice. The electric
force becomes of the order of the two forces in (3.1) when B

E
= O(B2/3), where the

expression for the Fritz volume Vb1
has been used. When B

E
� B2/3 the electric

force is large compared with the surface tension force (the right-hand side of (3.1)),
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and the volume of the bubble at detachment (Vb2
say) is determined to an order of

magnitude by the balance ρgVb2
∼ ε0εE

2
∞V

2/3
b2

, which gives Vb2
/a3 = O(B

E
/B)3. The

predicted increase in the bubble volume with the electric field is displayed by the
results of figure 2(a) for B = 0.03 and moderate values of B

E
but not by the results

of figure 2(b) for B = 0.1.
The attached bubble ceases to be spherical (for B � 1) when the electric stress is

able to deform its surface. This happens when ε0εE
2
∞ ∼ γ /V

1/3
b2

or, upon using the

estimate of Vb2
above, when B

E
=O(B1/2). The bubble takes then a prolate shape

because the inward electric stress is stronger at the equator than at the pole. If
the electric field is further increased, the bubble becomes cigar-shaped, with radius
ã and height h (at detachment) determined by the order of magnitude balances
ε0εE

2
∞ ∼ γ /ã ∼ ρgh, which give ã/a = O(1/B

E
) and h/a =O(B

E
/B) in dimensionless

variables. The volume of the bubble is now of order Vb3
∼ ã2h ∼ a3/(B

E
B), which

decreases with increasing B
E

(see figure 2). The electric stress and the surface tension
stress γ /ã both point toward the gas, increasing its pressure, and their variation
with vertical distance balances the hydrostatic depression ρgx acting on the lateral
surface of the bubble. The radius of the bubble ã becomes of the order of the radius
of the orifice a when B

E
becomes of order unity. This sets an upper bound to the

hydrostatic regime in the configuration analysed here, though higher fields may be
admissible when the bubble grows by evaporation of the liquid on a surface heated
to a temperature above the boiling point of the liquid rather than by injection of gas
through an orifice (Cheng & Chaddock 1985, 1986; Ogata & Yabe 1993a, b).

The estimations in the preceding paragraphs need some changes when the contact
angle of the liquid with the bottom wall is not small. Then the radius of the
contact line is of the order of the radius of the bubble. The balance of forces
(3.1) at detachment in the absence of electric field becomes ρgV ′

b ∼ γV ′1/3

b in orders
of magnitude, giving a modified estimate of the volume V ′

b1
∼ (γ /ρg)3/2, which is

independent of a. The electric force begins to matter when ε0εE
2
∞V ′2/3

b1
∼ ρgV ′

b1
, which

amounts to B
E
= O(B1/2). The results of the preceding paragraph for B

E
� B1/2 are

still valid but the surface tension force across the contact line (of characteristic radius
ã) is now of the order of the electric and buoyancy forces. The intermediate regime
B2/3 � B

E
� B1/2 disappears.

The numerical results of figure 2(b) reveal that B = 0.1 is not sufficiently small
for the bubble volume to display the predicted growth and decay with increasing
electric field. To rationalize these results let us decompose the electric stress into a
surface-averaged part τ e

n =A−1
b

∫
Σ0

τ e
n dA (where Ab is the area of the attached bubble

surface) and a variation about this average δτ e
n = τ e

n − τ e
n . The surface-averaged stress

merely increases the pressure of the gas. The vertical force due to τ e
n would be zero

on a closed surface and is downward on the surface of an attached bubble. But
this downward force is balanced by the opposite force due to the gas overpressure
generated by τ e

n , acting on the horizontal projection of the bubble surface. Thus it is
only the vertical force due to δτ e

n that matters in the balance of forces on the bubble.
When it is evaluated from the numerical solutions for B = 0.1, this force is upward for
small values of B

E
(as it would be for a hemispherical bubble, for which an analytic

solution exists; see Landau & Lifshitz 1960, pp. 42–43) and decreases and becomes
downward when B

E
increases, but it is always small compared with the buoyancy and

surface tension forces. In these conditions, perhaps the main influence of the electric
stresses on the results of figure 2(b) is to deform the surface and thus modify the
other forces acting on the bubble rather than to impart a vertical force on it directly.
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Figure 3. Dimensionless volume of the bubbles (scaled with a3) as a function of the
dimensionless flow rate of gas We1/2 for B =0.1, ε = 10 and three different values of
the electric Bond number. B

E
= 0 (solid curve), 0.9 (dashed curve) and 10 (chain curve).

The discontinuities in the first two curves correspond to coalescences of the bubbles. The
dotted line at the right-hand side has the slope 6/5 predicted by Davidson & Schuler (1960)
for the high-flow-rate regime in the absence of an electric field.

The above decomposition of the electric stresses should be used also for other values
of B . However, this formal step is not so important when B is small and the liquid
wets the surface, because the force due to τ e

n is itself negligible when the area of the
contact circle is small compared with the area of the bubble.

3.2. Numerical results for high flow rates

Figure 3 shows the final volume of the bubbles as a function of the dimensionless
flow rate for B = 0.1, ε = 10, θ = 45◦ and three values of the dimensionless electric
field. Additional computations carried out for other values of ε give results similar
to those of figure 3 though, as with the quasi-static solutions of figure 2, the value of
the electric field required for the electric stresses to have an effect increases when ε is
decreased. Similarly, computations carried out elsewhere in the absence of an electric
field (Higuera & Medina 2006) show that the process is qualitatively similar for
different values of the Bond number B . Finally, the results for high flow rates do not
change much when the contact angle is changed. The results of figure 3 are therefore
expected to be representative of the solutions for a range of values of B , ε and θ .

The discontinuities in the two upper curves of figure 3 (the solid curve, B
E
= 0, and

the dashed curve, for which B
E
= 0.9) are due to coalescence of the bubbles upon

injection when the Weber number is sufficiently high. In the absence of an electric field,
coalescence of bubbles in couples occurs above We1/2 ≈ 50, and the occurrence of
two successive coalescences leading to ‘triple bubbles’ begins for We1/2 slightly above
400. When an electric field is applied, coalescences are postponed to higher values of
the Weber number. Only single coalescences are observed in the numerical results for
B

E
= 0.9, when We1/2 is higher than about 150, and no coalescence is observed for
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Figure 4. Periodic generation of single bubbles for B =0.1, ε = 10 and various values of B
E

and We. (a) B
E
=0.9, We1/2 = 10 (period= 12.51); (b) B

E
= 0.9, We1/2 = 80 (period= 12.20);

(c) B
E
= 10, We1/2 = 10 (period= 9.28); (d) B

E
= 10, We1/2 = 80 (period= 8.88); (e) B

E
= 10,

We1/2 = 150 (period= 10.06). The pattern at the instant of detachment of a bubble is shown
in each case.

B
E
=10 (the chain curve in figure 3). This is probably the most important effect of

the electric field in the range of flow rates explored here.
Solutions for different values of B

E
and We1/2 before the onset of coalescence are

compared in figures 4(a–d). The shapes of the bubbles in the upper row of the figure,
for B

E
=0.9, are not much affected by the electric stress. The mean distance between

bubbles decreases, and their mutual interaction therefore increases, when the Weber
number increases. The bubbles in (c) and (d) of the lower row, for BE =10 and the
same two values of the Weber number as in (a) and (b), are much more elongated by
the electric stress while they are attached to the orifice. The shape of these bubbles
changes much upon detachment, and during a certain lapse of time they rise faster
than the rounder bubbles of (a) and (b), which increases their spacing and inhibits
their coalescence in the vicinity of the orifice (cf. estimates in § 3.3 below). Case (e) of
figure 4, for B

E
=10 and We1/2 = 150, has no analogue in the upper row because the

bubbles already coalesce at this Weber number when B
E
=0.9.
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Figure 5. The generation of a compound bubble for B = 0.1, ε = 10, BE = 0.9 and We1/2 = 150.
(a) t = 14.06, immediately after the detachment of the leading bubble; (b) t = 24.88, immediately
after the detachment of the trailing bubble; (c) t = 33.05, immediately after coalescence of the
two bubbles. Times are non-dimensionalized with the capillary time (ρa3/σ )1/2 and measured
from the time of detachment of the bubble preceding bubble 1 in (a). The period of the process
is 24.88. Notice the displacement of the contact line away from the orifice in (c).

The coalescence of bubbles in couples for B
E
= 0.9 and We1/2 = 150 is illustrated

in figure 5. The leading bubble of each couple (labelled 1 in the figure) grows and
detaches. The trailing bubble (labelled 2) grows in the presence of the first bubble,
detaches from the orifice, rises faster than the leading bubble and coalesces with it at
a certain height above the orifice to form the bubble 1+2. This regime of bubbling is
well documented in the absence of an electric field and was termed the pairing regime
by Zhang & Shoji (2001). The present computations show that a moderate electric
field (B

E
= 0.9) postpones the pairing regime to higher values of the Weber number

without changing it qualitatively, while a high electric field (B
E
= 10) suppresses the

pairing regime.
The height of coalescence decreases when the Weber number is increased while keep-

ing the other parameters constant. Detachment of the trailing bubble and coalescence
are almost simultaneous events for a range of Weber numbers, and the trailing bubble
coalescences with the leading bubble before detaching from the orifice when the Weber
number is further increased. Then the sequence detachment–detachment–coalescence
changes to detachment–coalescence–detachment. This latter sequence is illustrated in
the upper row of figure 6 for B

E
= 0 and We1/2 = 400. The lower row of figure 6, for

B
E
= 0.9 and We1/2 = 400, still displays the former sequence, though detachment of

the trailing bubble, in 6(e), occurs only slightly before coalescence, in 6(f ).
The lower part of the surface of a detached bubble is often concave toward the

liquid. The origin of this concavity is in the retraction of the surface immediately after
pinch-off, which leads to a re-entrant jet at the base of the most recently detached
bubble (Räbiger & Vogelpohl 1986). The tip of this jet may break and give birth
to one or a few small drops that shoot across the bubble and hit the upper part of
the surface, as in figure 6(c); see Higuera & Medina (2006) for a discussion of this
phenomenon and comparisons with experimental visualizations. The upper part of the
surface of an attached bubble may also become concave, and sometimes a downward
moving jet that enters the orifice develops in this region, a phenomenon known as
weeping (Zhang & Tan 2000). In the presence of an electric field, the electric stresses
favour the growth of any concavity once it is formed, and thus a concavity in the
upper part of an attached bubble may persist after the bubble detaches. This can be
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Figure 6. Upper row: The generation of a compound bubble for B = 0.1, BE = 0 and
We1/2 = 400. (a) t =18.49, immediately after the detachment of the leading bubble;
(b) t = 30.79, immediately after coalescence of the leading (detached) and trailing (attached)
bubbles; (c) t = 31.75, immediately after detachment of the double bubble (the contact line
is displaced away from the orifice). The period of the process is 31.56. Lower row: The
same process for B = 0.1, ε = 10, B

E
= 0.9 and We1/2 = 400. (d) t =18.89, immediately after

the detachment of the leading bubble; (e) t = 33.85, immediately after the detachment of the
trailing bubble; (f ) t =35.64, immediately after coalescence of the two bubbles (the contact
line is displaced away from the orifice). The period of the process is 33.85. Non-dimensional
times are measured from the detachment of the bubble preceding bubble 1.

seen in bubbles 1 and 1 + 2 of figure 5. At high Weber numbers the concavities tend
to develop into upward or downward moving jets that may pierce the bubbles and
transform them into tori. Since toroidal bubbles are very unstable to non-axisymmetric
perturbations and rapidly break down (Räbiger & Vogelpohl 1986), piercing has been
taken to define an upper bound for the Weber number beyond which axisymmetric
solutions are not realistic (Higuera & Medina 2006). The presence of an electric field
lowers this upper bound (see figure 3). The bubbles attached to the orifice undergo
extensive weeping for B

E
= 10 and values of We1/2 higher than about 200 (which may

cast some doubts on the validity of the assumption of axisymmetry even at these early
stages of the bubble evolution). These bubbles detach with a volume considerably
higher than the volume obtained by extrapolation of the chain curve of figure 3 and
become toroidal bubbles a short time after detachment.
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3.3. Order of magnitude estimates for B � 1

The order of magnitude estimates of § 3.1 are extended here to larger values of the
Weber number. As before, dimensional variables are used and the known results for
B

E
= 0 are reviewed first.

3.3.1. High-flow-rate regime of periodic bubbling in the absence of an electric field

Davidson & Schuler (1960) and Ramakrishna, Kumar & Kuloor (1968) showed
that a high-flow-rate inertia-dominated regime of periodic bubbling exists in which,
in the absence of an electric field, the effect of the surface tension is negligible and the
volume of the bubbles increases as the 6/5th power of the flow rate. In this regime
the velocity of order ve = O(Q/V

2/3
b ) induced in the liquid by the expansion of an

attached bubble of volume Vb leads to pressure variations of order ρv2
e , which exert a

downward force of order ρv2
eV

2/3
b on the surface of the bubble. This force is now large

compared with the surface tension force acting across the contact line and is the force
that buoyancy has to overcome in order to detach the bubble. The order of magnitude
balance ρgVb ∼ ρ(Q/V

2/3
b )2V 2/3

b gives the bubble volume estimated by Davidson &
Schuler (1960) and Ramakrishna, Kumar & Kuloor (1968) for the high-flow-rate
regime as Vb ∼ Vb4

= Q6/5/g3/5 or, in dimensionless terms, Vb4
/a3 = (We/B)3/5.

The transition from the quasi-static regime of § 3.1 to the high-flow-rate regime
discussed above occurs when the surface tension, buoyancy and flow-induced pressure
forces are all of the same order. When the contact angle is small and the contact line
coincides with the edge of the orifice, this condition reads γ a ∼ ρgVb ∼ ρv2

eV
2/3
b (or,

equivalently, Vb1
∼ Vb4

), which is satisfied for We ∼ Wec1
= 1/B2/3. When the contact

angle is not small and the radius of the contact line is of order V
1/3
b rather than a,

the transition (V ′
b1

∼ Vb4
) occurs for We ∼ We′

c1
= 1/B3/2.

It is worth noticing that, in the case of θ � 1, surface tension forces keep the
attached bubble spherical in the high-flow-rate regime when ρv2

e � γ /V
1/3
b4

, which

amounts to We � 1/B3/2. These are Weber numbers much larger than Wec1
, when

B is small.

3.3.2. High-flow-rate regime in the presence of an electric field

The estimates of the previous subsection are applicable in the presence of an electric
field if the electric force is small compared with the buoyancy force, which is the case
for B

E
� B2/3 when the contact angle is small and for B

E
� B1/2 otherwise (cf. § 3.1).

If these conditions are not satisfied then the transition from the quasi-static regime
to the high-flow-rate regime occurs when the flow-induced pressure force becomes of
the order of the buoyancy and electric forces.

Consider first the transition when the electric Bond number is in the range B2/3 �
B

E
� B1/2, which is relevant for small contact angles. Surface tension keeps the quasi-

static bubble spherical in this range of B
E
, and the balances defining the onset of the

high-flow-rate regime read ρv2
eV

2/3
b ∼ ε0εE

2
∞V

2/3
b ∼ ρgVb, which amount to Vb2

∼ Vb4

and give We ∼ Wec2
= B5

E
/B4. Surface tension still keeps the bubble spherical in the

high-flow-rate regime when Wec2
� We � 1/B3/2.

Consider now the onset of the high-flow-rate regime for B
E

� B1/2, which
corresponds to cigar-shaped bubbles in the quasi-static regime of § 3.1. When the
finite growth rate of the bubble is taken into account, its lateral expansion induces
a horizontal velocity ve = O(Q/(hã)) in the surrounding liquid. The counterpressure
of the liquid on the surface is thus of order ρv2

e ∼ ρ(Q2/a4)B2, where the quasi-
static estimates of ã and h worked out in § 3.1 have been used. This counterpressure
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Figure 7. Sketch of the solution regimes for B � 1 and a hydrophilic bottom surface. The
solid line Wec1

–Wec2
–Wec3

gives the upper bound of the quasi-static regime for different ranges
of B

E
. Bubble interaction occurs above this line and above the chain line at the right. The

order of magnitude of the volume of the bubbles at detachment is indicated in the different
regions.

becomes of the order of the electric stress (ρv2
e ∼ ε0εE

2
∞) when We ∼ Wec3

= B
E
/B2,

which defines the onset of the high-flow-rate regime for B
E

� B1/2.
If We � Wec3

(and B
E

� B1/2) then the normal stress due to the surface tension
becomes negligible and the conditions determining the radius ã and height h of
the bubble at detachment in the high-flow-rate regime are ρ(Q/hã)2 ∼ ε0εE

2
∞ ∼ ρgh,

which give ã/a ∼ We1/2B/B3/2
E

and h/a ∼ B
E
/B . The volume of the bubble is now

of order Vb5
∼ ã2h ∼ a3WeB/B2

E
, which increases linearly with We (rather than with

the classic 3/5th power law) and decreases with increasing B
E
. The condition h � ã

requires that We � Wec2
. Cigar-shaped bubbles occur in the high-flow-rate regime

within the range Wec3
� We � Wec2

, where the effect of the electric field is to decrease
the volume of the bubbles: Vb5

/Vb4
∼ (We/Wec2

)2/5 � 1. The electric stresses cease
to play an important role and the bubble becomes round with a volume of order Vb4

when We � Wec2
.

The estimates of this section and of § 3.1 are schematically summarized in figure 7
for the case of a hydrophilic surface (θ � 1). The case of non-small contact angles is
simpler, in that the two lines We= Wec1

and We =Wec2
of figure 7 defining the upper

bound of the quasi-static regime for B
E

� B1/2 are replaced by the single horizontal
line We= We′

c1
= 1/B3/2.

3.3.3. Interaction and coalescence of bubbles

The possibility of the interaction and coalescence of successive bubbles upon
injection (in the vicinity of the orifice) depends on the ratio of the time of growth of
a bubble attached to the orifice and the time it takes for a recently detached bubble
to rise to a height above the orifice of the order of the size of the bubble. The time
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of growth is tgrowth = Vb/Q, where Vb is the volume of the bubble at detachment. The
time of rise depends on the apparent mass of the bubble.

The apparent mass of the round bubbles that obtain for B
E

� B1/2 is of order
ρVb, and the time of rise to a height V

1/3
b is of order trise =V

1/6
b /g1/2. The

ratio trise/tgrowth = Q/(g1/2V
5/6
b ) can be evaluated using the various estimates of Vb

worked out before. In the quasi-static regime it is Vb ∼ V ′
b1

when the contact angle
is not small, and Vb ∼ Vb1

for B
E

� B2/3 or Vb ∼ Vb2
for B2/3 � B

E
� B1/2 when

the contact angle is small. This gives trise/tgrowth ∼ (We/We′
c1
)1/2 in the first case,

trise/tgrowth ∼ (We/Wec1
)1/2 in the second case and trise/tgrowth ∼ (We/Wec2

)1/2 in the
third case. All these time ratios are small, implying that the interaction between
bubbles is negligible in the quasi-static regime. In the high-flow-rate regime, however,
the bubble volume is Vb ∼ Vb4

and trise/tgrowth ∼ 1, so that bubble interaction and
coalescence should be expected. Since Wec2

� Wec1
(see figure 7), the effect of

an electric field satisfying B2/3 � B
E

� B1/2 is to postpone bubble interaction for
small contact angles to values of the gas flow rate higher than in the absence
of the field. The price to be paid is an increase in the volume at detachment,
because Vb2

> Vb1
.

The estimate of trise must be modified for the elongated bubbles that appear when
B

E
� B1/2. The apparent mass of an elongated bubble of radius ã and height h

is of order ρã3, and the distance it has to travel to move out of the region where
the following bubble grows is of order h. Now the acceleration–buoyancy balance
ρã3(h/t2

rise) ∼ ρgVb (with Vb ∼ ã2h) gives trise ∼ (ã/g)1/2 and thus trise/tgrowth ∼
Q/(g1/2ã3/2h). This ratio is small only if We � Wec4

= 1/(B
E
B), which is small

compared with Wec3
. At variance with this estimation, the numerical results of

figure 3 show that the electric field inhibits the coalescence of elongated bubbles.
The explanation is probably in the change in shape of the bubbles upon detachment
mentioned in § 3.2.

4. Conclusions
The periodic bubbling of a gas that is fed at a constant flow rate through an orifice

at the bottom wall of a liquid at rest has been investigated numerically when the
liquid is subject to an electric field due to a high d.c. voltage applied between the
horizontal bottom wall and another horizontal electrode at a large distance above
the bottom wall. An inviscid liquid is assumed that is either a dielectric or very polar.
In the absence of space charge in the bulk of the liquid and space variations of its
dielectric constant, the only effect of the electric field is to generate a stress at the
liquid–gas surface that is normal to the surface and directed toward the gas. The
problem depends on five dimensionless parameters.

The bubbles grow quasi-statically at the injection orifice when the Weber number
based on the flow rate of gas is small. The electric stresses elongate the quasi-static
bubbles vertically and affect their volume at detachment. This volume may either
decrease when the electric field is increased or first increase and then decrease. In
both cases the numerical results show that a properly chosen electric field can reduce
the volume of the bubbles. The orderly quasi-static growth of the attached bubbles
comes to an end when the electric field is increased above a certain value, apparently
giving way to more complex regimes of bubbling (not discussed here) in which tiny
bubbles and drops are shed by an attached meniscus.

The pressure variations due to the flow induced in the liquid by the expansion
of an attached bubble begin to affect the bubble when the Weber number becomes
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of the order of a certain critical value that marks the transition to a high-flow-rate
regime in which the interaction and eventually coalescence of bubbles occur in the
vicinity of the injection orifice. A moderate electric field is found to increase the Weber
number at which coalescence begins, thus decreasing the final volume of the generated
bubbles. This effect is more pronounced when the electric field is increased, but high
fields also favour the development of strong vertical jets that cross the bubbles and
may cause their breakdown. Estimates of the Weber number of transition to the
high-flow-rate regime as a function of the electric Bond number have been worked
out in the asymptotic limit of small Bond numbers.

This work was supported by the Spanish Ministerio de Educación y Ciencia
under projects DPI2002–4550–C07-05 and DPI2004–05246–C04–02, and by UPM–
CM project R05/9961.
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